Title: Persistent openness and environmental innovation: An empirical analysis of French manufacturing firms

Article Type: Original article

Keywords: Environmental innovation; Incremental/radical; Openness; Persistence; Search

Corresponding Author: Dr. Thuc Uyen Nguyen-Thi,
Corresponding Author's Institution: LISER, Luxembourg Institute of Socio-Economic Research

First Author: Caroline Mothe, Prof.Dr.
Order of Authors: Caroline Mothe, Prof.Dr.; Thuc Uyen Nguyen-Thi

Abstract: The antecedents of environmental innovation and the impact of openness on technological innovation have been well studied, yet the role of external knowledge search remains largely unknown. This study explores whether six dimensions of open search (external R&D, acquisition, R&D cooperation, and three types of external information sourcing) enhance firms' radical and incremental innovation with environmental effects (EI) when used either sporadically or persistently. It shows that the temporal dimension of openness matters. Persistent open knowledge search efforts are associated with a firm's propensity to introduce EI, more so than sporadic search. Furthermore, the different types of knowledge search have heterogeneous effects on different types of EI. It also shows that persistent innovation is more relevant in the case of radical EI.
Dear Editor

Thank you very much for your appreciation of the three reviewer’s comments. We here synthesize the manner in which we have responded to these comments:

- **Comment 1**: we have changed this and paid particular attention to always use the same notion
- **Comment 2**: in order to satisfy the reviewer, we deleted this section and reinforced the paragraph in which we elaborate Hypothesis 3 on the absorptive capacity role
- **Comment 3**: you are entirely right; we do have an ID in both waves, which allowed us to merge the data. We have provided the reviewer with other papers which are based on the merging of data in various French CIS waves.

Thank you very much again for your help

Yours

Caroline and Uyen

Reviewer #5: Dear authors,

Thank you for considering my recommendations in the revised version of your manuscript. I can see that the manuscript improved but still a few issues are unclear or need polishing from your side.

1. **Page 4**: you suggest the three sources of external knowledge (R&D cooperation, information sourcing, and acquisition). This is OK. However, in the following text you explain R&D cooperation. In addition, you change information sourcing into external information sources and acquisition disappears totally. While reading your paper, I think that you can simply eliminate acquisition but keep straight in your wording.

 We have changed this and paid particular attention to always use the same notion. We here used both “information sourcing” and “external information sources” in the same manner as we here concentrate on external knowledge: thus the sources of information we concentrate on are external. In fact, we preferred to use the notion “external information” in order to account for the second source of external knowledge. We also reintegrated a few sentences from a previous version on
acquisition, which we keep in order to account for the three sources (as we do in the empirical part). Thanks a lot for mentioning the fact that this paragraph (rather surprisingly) disappeared in this new version.

2. Section 2.3. It nicely shows that the author(s) got familiar with the absorptive capacity literature. However, considering your hypothesis development I cannot see why you need this text at all. Please delete as it does not contribute to the understanding of your paper.

 Thank you very much for this remark. We have deleted this section and reinforced the paragraph in which we elaborate Hypothesis 3 on the absorptive capacity/internal R&D role.

3. In my previous I asked how you could ensure that when you merge the data sets you could ensure that answers of company A from 2006 are linked to company A from 2006. The only information that you provide on this issue is that you only focused on companies that participated in both surveys. That is not enough. You need to ensure that the merging of the data was done correctly which means while you were merging the data from 2006 and 2008 you are able to link company A data to company A data and so forth. But as far as I know the french CIS data this might be challenging because you might miss a unique ID to be able to do the merging. Is this correct?

 We do have an ID in both waves, which allowed us to merge the data. Many authors have used several waves of the French CIS and merged data (e.g. Colombelli et al., 2013; Haned et al., 2014; Lhuillery, 2014; Raymond et al., 2015).

References

I hope my comments help you to further improve your manuscript.

 Thank you very much for your help to improve the quality of our manuscript. Yours, The authors
Persistent openness and environmental innovation:
An empirical analysis of French manufacturing firms

Caroline Mothe
University Savoie Mont Blanc, France
Caroline.Mothe@univ-smb.fr

Uyen T. Nguyen-Thi1
Luxembourg Institute of Socio-Economic Research (LISER), Luxembourg
thithucuyen.nguyen@liser.lu

Abstract
The antecedents of environmental innovation and the impact of openness on technological innovation have been well studied, yet the role of external knowledge search remains largely unknown. This study explores whether six dimensions of open search (external R&D, acquisition, R&D cooperation, and three types of external information) enhance firms’ radical and incremental innovation with environmental effects (EI) when used either sporadically or persistently. It shows that the temporal dimension of openness matters. Persistent open knowledge search efforts are associated with a firm’s propensity to introduce EI, more so than sporadic search. Furthermore, the different types of knowledge search have heterogeneous effects on different types of EI. It also shows that persistent innovation is more relevant in the case of radical EI.

Keywords: Environmental innovation; Incremental/radical; Openness; Persistence; Search.

1 Corresponding author
1. Introduction

As 2015’s worldwide climate conference in Paris established, the economic importance of environmental innovation is undisputed (e.g., de Marchi, 2012; Ghisetti et al., 2015; Wagner, 2007), especially as a mean to reduce the negative externalities of pollution and waste. A growing literature thus focuses on innovation with environmental effects (EI) and its determinants, such as regulatory and institutional frameworks or supply- and demand-side factors (e.g., Cainelli et al., 2011, 2015; Del Rio Gonzalez, 2009; Horbach, 2008). To develop such environmental-friendly products, firms must be able to innovate, this ability being tightly linked to the pool of knowledge available within or accessible to an organization (e.g., Laursen and Salter, 2006; Leiponen and Helfat, 2010). Researchers thus explicate the advantages of combining internal investments with external resources (Cassiman and Veugelers, 2002), and many modern firms already have opened their innovation processes to access and exploit external knowledge while leveraging their internal resources for their core activities (Chesbrough, 2006). By increasing the openness of their innovation processes, firms may better use external knowledge and complement their internal R&D; that is, traditional R&D activities get augmented by sourcing external technologies (Chesbrough, 2006). A crucial element of open innovation activities thus involves firms’ search for external knowledge (Köhler et al., 2012). Inbound search has therefore become the focus of academic studies that measure how openness and external knowledge acquisition affect firms’ technological innovation performance (e.g., Laursen and Salter, 2006; Leiponen and Helfat, 2010). However, external knowledge searches have been widely studied in relation with technological innovation (e.g. Hagedoorn, 1993; Cassiman and Veugelers, 2002; Laursen, and Salter, 2006; Leiponen and Helfat, 2010; Zhou and Li, 2012; Chatterji and Fabrizio, 2014); theory and empirical research EI remain scarce though.

A few studies however posit that external knowledge search drives EI (De Marchi and Grandinetti, 2013; Triguero et al., 2013). Ghisetti et al. (2015), assessing the relationship between the depth and breadth of knowledge sourcing and a firm’s propensity to introduce EI, show that knowledge sourcing enhances various types of EI performance, with the suggestion that intensive, broad interactions benefit EI, but deepening or broadening knowledge sources beyond some threshold level can be adverse. Cainelli et al. (2015) also consider the specific roles of internal (internal R&D), external (alliances, networks, interorganizational relationships), and hybrid (knowledge embedded in patents, R&D services) resources. They find that external resources (present and past) are more important for EI than for other types of innovation. Although these empirical analyses strongly indicate a role of openness for EI, they do not offer a holistic view of external knowledge search that spans multiple sources. That is, Ghisetti et al. (2015) focus on external information sources, and Cainelli et al. (2015) consider R&D cooperation and acquisition. In an effort to extend extant research, we propose a more global approach, in which external knowledge search not only can take place through information sourcing but also through R&D acquisition or sharing strategies. The first contribution of our study therefore resides in the fact that we do not focus on one specific external source of knowledge but do take into account different possible sources.

Moreover, acknowledging that knowledge per se is characterized by cumulativeness (Boisot, 1998), we integrate the notion of persistence in open search, such that we can track the intertemporal impact of openness on firms’ EI. Indeed, such intertemporal perspective was missing in previous studies, probably because of a lack of data (Cainelli et al., 2015). The effects of openness persistence and the conditions in which firms may benefit from such openness for EI are still unstudied. The second contribution of our study therefore lies on the fact that we test the effects of various persistent sources of knowledge on different types of product EI. This analysis accordingly responds to Cainelli et al.’s (2015) call for research into...
whether the impacts of various resources differ across EI types. We predict that openness is a long-term process that firms can use to consolidate their competencies, such that persistent, continual open search can enhance product EI. The third contribution of our study is the distinction we make between incremental and radical EI to determine whether the type of openness varies according the level of novelty, in line with recent developments of the Knowledge Based View (Grant, 1996) that stress knowledge as the key component of a firm’s radical innovation (Zhou and Wu, 2010).

Our research question can thus be stated as follows: What type of open knowledge search affects technological innovation with environmental effects? This question comprises two main sub-questions: Does persistent open knowledge search lead to more EI than sporadic search? And is persistent search more relevant for radical EI than for incremental EI? In the next section, we elaborate on our theoretical framework and draw several main hypotheses. The data, drawn from the Community Innovation Survey (CIS) for the periods 2004–2006 and 2006–2008, represent our response to Ghisetti et al.’s (2015) call to use panel data. We present the methodology and results of our econometric models, and then provide some public policy recommendations, outline the limitations of this research, and suggest avenues for further research.

2. Literature review

Of the four critical success factors identified by Fleith de Medeiros et al. (2014) for environmentally sustainable product innovations (i.e., market, law, and regulation knowledge; interfunctional collaboration; innovation-oriented learning; R&D investments), we focus on external knowledge obtained from various sources through a firm’s open search.

2.1. Environmental innovation and open knowledge search

External information sources are vast and varied, including customers, competitors, suppliers, and research institutions (Edquist, 1997; Lundvall, 1992). Innovative firms connect to highly diversified sets of agents through technical networks that enable them to exchange useful information (Edquist, 1997; Lundvall, 1992). When their innovation draws on many external sources of ideas and information, firms can increase their chances of success. Leiponen and Helfat (2010) demonstrate that broader innovation objectives and knowledge sources are associated with successful innovation, and successful innovators link to various information and collaboration networks. Thus, open innovation likely involves multiple external sources of information, such as clients, suppliers, consultants, government agencies, government laboratories, and university research labs. We extend existing literature on the impact of external knowledge search on technological innovation by postulating that open search also positively influences EI.

This type of innovation tends to be relatively new for firms, so they generally do not possess the internal competencies required to engage in EI (Horbach et al., 2012; Rennings and Rammer, 2009), leading them to need external knowledge sources. Few studies offer insights into the impact of open search on EI though, so we turn to literature related to technological innovation (TI), asserting that environmental product innovation is a technological product innovation with environmental benefits. The analogy between EI and TI reflects two main considerations. First, EIs tend to be particularly complex, such that they require knowledge and competences that are unlikely to be among a firm’s core competences (Horbach et al., 2012; Rennings and Rammer, 2009). That is, firms that strive for EI must go beyond core competences (Teece et al., 1997). Second, a stylized fact emerging from the scarce EI literature on sources of knowledge reveals that EIs require knowledge inputs from different, heterogeneous sources, possibly more so than other innovations (Ghisetti et al.,
2015; Horbach et al., 2013; Rennings and Rammer, 2009). Therefore, external knowledge is an idiosyncratic EI driver to consider.

Choosing among different sources is a crucial step in the search process, and firm management is responsible for defining its search for external knowledge according to the available sources (Köhler et al., 2012). This scanning stage allows the firm to decide on which type of knowledge it wants to access externally. This stage is thus crucial for the successful implementation of external knowledge sourcing (Köhler et al., 2012). To expand previous studies (e.g., Cainelli et al., 2015, on R&D cooperation and acquisition; Ghisetti et al., 2015, on information sourcing), we account for three diverse sources of external knowledge: R&D cooperation, external information, and acquisition.

The first studied source, R&D cooperation, can increase both absorptive capacities and EI. By engaging in external relations, firms reduce the duplicated R&D efforts, risks, and costs often associated with innovation, as well as benefit from economies of scale or scope and access to technology that is not available in the market (Hagedoorn, 1993). Collaboration enhances EI by enabling economies of scale, especially for firms in the same sector (Cainelli et al., 2011) or with industrial associations, public and private entities (Del Rio Gonzalez, 2009), and environmentally concerned stakeholders (Wagner, 2007). The second source, external information, is composed, in line with Ghisetti et al. (2015), of three sets market (competitors, customers, suppliers), institutional (universities, governments, public research institutes), and others (journals, professional standards). These various information sources provide different resources and technological capabilities which can complement the firm's own innovation resources (Nieto and Santamaria, 2007). The third source of external knowledge, acquisition, can take two forms: acquisitions of embodied technology or acquisitions of external R&D. Some studies suggest that acquisition is important for EI (de Marchi and Grandinetti, 2013; Horbach et al., 2012, related to machinery acquisition). In their study of Spanish manufacturers, Cainelli et al. (2015) indicate that hybrid resources, such as equipment acquisitions (but not patents), are more relevant for EI than for non-EI.

2.2. Radical vs. incremental environmental innovation and openess

The impact of openness may differ according to the degree of innovation, which reflects the magnitude of change or degree of innovation novelty (Gatignon et al., 2002). A common distinction cites incremental versus radical innovation (De Leeuw et al., 2014). An initial, radical, innovative product might launch, and then subsequent improvements occur through incremental innovations, at the product or process level, to enhance diffusion (Lhuillery, 2014). Innovations are incremental when marked by slight improvements that use existing technologies and target existing markets. Incremental EI aims at “modifying and improving existing technologies or processes to raise efficiency of resource and energy use, without fundamentally changing the underlying core technologies” (OECD, 2012, p.3). Radical EI instead “involves a shift in the technological regime of an economy and can lead to changes in the economy’s enabling technologies” (OECD, 2012, p.4). It might include developments of breakthrough technologies or reconfigurations of product–service systems (e.g., closing the loop from resource input to waste output). It results in market or technology discontinuities, such as new technologies for existing markets or existing technologies for new markets. This type of innovation is often complex and likely to involve non-technological changes (OECD, 2012), as well as mobilize diverse actors and information sources.

Recent developments of the KBV (Knowledge-Based View) also assert that a firm’s knowledge base represents its most unique resource for radical innovations (Zhou and Li, 2012; Zhou and Wu, 2010). Because radical innovation involves a greater degree of discontinuity in the sources of innovation, previously used knowledge sources may be obsolete, so firms undertake more intensive external knowledge searches.
3. Hypothesis development

We will here develop our three main hypotheses on the link between persistent open search and EI (H1), on the higher importance of persistent open knowledge search for radical EI than for incremental EI (H2), and on the moderation role of absorptive capacity (H3). We will use Toulmin’s (1969) model of argumentation, presenting assumptions, counter-arguments and implications that lead to elaborate each hypothesis.

Data seem to converge in suggesting that the three sources of external knowledge we retain (R&D cooperation, external information, and acquisition) seem to benefit EI. Formal cooperation with external partners benefits EI even more than it does other types of innovations (Del Rio et al., 2013; De Marchi, 2012; Horbach, 2008). Various empirical studies testify this positive influence: cooperative networks with universities and public institutions drive EI (Cainelli et al., 2011; De Marchi, 2012; Triguero et al., 2013). In China, firms with more efficient, broad external networks (i.e., with suppliers, competitors, consumers, research institutes, environmental protection agencies, media, and local residents) are seen as being more engaged in EI (Cai and Zhou, 2014). As regards with the second source of external knowledge, external information, Ghisetti et al. (2015) show that this type of knowledge sourcing enhances various types of EI performance. The third source of external knowledge may be of two different types: the acquisition of embodied technology or that of external R&D. Some studies suggest acquisition is important for EI (De Marchi and Grandinetti, 2013; Horbach et al., 2012, for machinery acquisition). In their study of Spanish manufacturers, Cainelli et al. (2015) indicate that hybrid resources, such as equipment acquisitions (but not patents), are more relevant for EI than for non-EI. All in all, these results tend to lead to the conclusion that the more diverse the knowledge and competences that are required to develop EI, the more the firm needs external resources, whether obtained by collaborating with external organizations, acquiring technology, or accessing diverse information sources.

Some counterfactuals however exist. Horbach et al. (2013) cite the significant influence of R&D cooperation during 2006–2008 in Germany, though only for (process) innovations with environmental benefits for the firm, but not for product EI (which we study here). Another study did not find any significant influence of collaboration with competitors, suppliers, or customers on EI (Cuerva et al., 2014). This counter-example likely reflects its focus on low-tech, small firms. In the same line, Ghisetti et al. (2015), for information sources, suggest that intensive, broad interactions benefit EI, but that deepening or broadening knowledge sources beyond some threshold level can be adverse. Some studies also suggest an inverted U-shaped relationship between the variety of open search and EI (Ghisetti et al., 2015), similar to indications of a curvilinear relation between wide and open search and technological innovation (Katila and Ahuja, 2002; Laursen and Salter, 2006). It is therefore not obvious that openness as far as external knowledge search is concerned always favors EI. Moreover, as far as acquisition is concerned, results are even more mitigated: the influence of a strategy to acquire valuable knowledge and expertise from the marketplace on EI is uncertain (Dahlander and Gann, 2010). Extant results are mixed in relation to the acquisition of patents or other external knowledge. Some evidence indicates they are not significantly more important for EI than for other innovations (e.g., De Marchi, 2012; Horbach et al., 2012). Cainelli et al.’s (2015) comprehensive framework of internal, external, and hybrid resources for EI suggests that environmental innovators possess more extensive external relationships and acquire more equipment than non-environmental innovators.

Our rebuttals to these counter-arguments and findings are linked to the highlighted specificity of EI, namely its more complex nature than traditional innovation. This peculiarity means that the firm often does not have the internal knowledge, resources and capabilities to
develop such innovations that reduce environmental harms. This leads to an increased need for knowledge inputs from heterogeneous sources. Collaboration modes and external knowledge sources appear particularly important for EI adoption, relative to non-EI implementation. We therefore posit that open knowledge search should benefit EI.

This is all the more true as regards to persistent knowledge search. Research on the persistence of innovation (Clausen et al., 2012; Lhuillery, 2014) and the impacts of being a persistent innovator (Chassagnon and Haned, 2015) leads us to argue that open search should be persistent for the firm to reap its full EI benefits. Indeed, some sources might not exert an impact at one point in time but could offer benefits when used persistently. Supporting this view, Kesidou and Demirel (2012) find that recurrent investments enable important energy and material savings. This stock must be up to date at all times and renewed constantly. With persistent open search efforts, a firm also builds skills, procedures, and routines for conducting innovation activities. Such capabilities cannot be acquired through one-shot external searches but instead develop over time, through processes of learning and shaping of routines. This is due to the fact that knowledge building is a cumulative process (Boisot, 1998); once a specific piece of knowledge has been created, it can serve as a foundation for further developments. This cumulative quality implies that the firm’s intangible assets contribute to its stock of knowledge (Boisot, 1998). Accumulating knowledge is a long-term effort, and at each point in time, the firm should be able to access and use previously created knowledge. In a knowledge-based perspective, the inherent cumulativeness of knowledge capital lead persistent innovation leaders to encourage EI (Chassagnon and Haned, 2015) through market introductions of new or significantly improved goods or services that reduce environmental harms (e.g., emissions, waste, energy). In line with these arguments, we hypothesize:

Hypothesis 1: The more persistent the open knowledge search, the greater the firm’s EI.

Vast research on the sources of radical innovation stresses the importance of external knowledge and provides empirical evidence of its crucial role for innovation (Maes and Sels, 2014). The limits of openness, in terms of cognitive constraints for processing knowledge inputs (Ghisetti et al., 2015), might explain why open innovation often serves to foster radical innovations. Inauen and Shenker-Wicki (2012) reveal that companies that emphasize inside-out open innovation are more likely to create radical innovations while those pursuing closed innovation instead are more likely to exhibit a better incremental innovation performance. O’Connor (2006), in a qualitative study of twelve potential innovation projects by established, large firms, concludes that radical innovation must be open. The benefits of knowledge provided by users through inventive collaborations also are greatest in new technology areas and for the generation of radical product innovations (Chatterji and Fabrizio, 2014).

Some counter-arguments to the higher importance of knowledge openness for radical innovations can also be found in the literature. O’Connor (2006) for instance indicates that for open innovation to encourage radical innovation, it needs to be managed in balance with internal capability developments. A few knowledge sources, used intensively, benefit radical innovations more than a vast breadth of sources, such that more radical innovations reduce the effectiveness of external search breadth for improving innovative performance, whereas external search depth becomes more effective (Laursen and Salter, 2006).

As a rebuttal to these counter-factuals, we can argue that these empirical results relate to technological innovation, but not to EI. Indeed, the importance of external sources for radical innovation has not been tested in an EI context. One main argument however leads us to predict that open search for external knowledge is required more for radical EI than for incremental EI: A firm that wants to develop radical innovations, by definition, stretches the
boundaries of what it knows. Due to the more complex nature of EI than of traditional
innovation, and the increased need of external sources of knowledge for radical innovation,
we assume, we take the reasoning a step further and predict that these findings hold especially
for radical EI:

Hypothesis 2: Persistent open knowledge search is more relevant for radical EI than for
incremental EI.

Firms need to identify the most promising external knowledge sources, but they also must
optimize their absorptive capacity (Grimpe and Sofka, 2009), which enables them to find and
recognize relevant external knowledge sources, then transform, combine, and assimilate that
knowledge with their existing knowledge stocks (Grimpe and Sofka, 2009; Todorova and
Durisin, 2007). Open innovation should thus be balanced by internal capability developments
(O’Connor, 2006). This argument leads us to elaborate a third hypothesis on the moderating
effect of internal R&D intensity, linked to the assimilation aspect of absorptive capacity,
which fosters recognition of the value, assimilation, and application of external knowledge
(Cohen and Levinthal, 1990). From this perspective, external sourcing of knowledge cannot
replace in-house R&D but instead complements the internal technology base. If absorptive
capacity is inadequate, knowledge sharing offers fewer direct benefits for the firm’s
innovation capacity. Because firms need to absorb relevant knowledge from external
sources, externally oriented knowledge capabilities and absorptive capacity become critical to
innovation performance (Maes and Sels, 2014).

Previous studies on EI have shown that internal R&D helps firms transform broadly
sourced external knowledge into innovations (Ghisetti et al., 2015) and that it is a more
important driver of environmental than of non-environmental innovations (Cainelli et al.,
2015). Internal R&D activities raise the stock of technological knowledge in firms, by
increasing their ability to capture external knowledge (Cohen and Levinthal, 1990). Corradini
et al. (2014) also suggest that the role of R&D for absorbing external knowledge can be
reinforced, because generated internal knowledge, as a public good, implies spillover effects
from investments that aim to decrease environmental harms.

The search for knowledge from different external sources thus does not replace in-house
innovation activities but rather complements them in support of EI. We therefore predict a
positive moderating effect of internal R&D intensity, which should help firms transform their
external knowledge into innovative green products. This prediction is in line with Ghisetti et
al.’s (2014) finding that a firm’s R&D increases its probability of becoming an environmental
innovator and positively moderates the EI impact of the firm’s knowledge sourcing:

Hypothesis 3: A firm’s internal R&D intensity positively moderates the impact of persistent
knowledge search on EI.

4. Methodology, data and variables

4.1 Data

This study relies on firm-level data from two consecutive waves of the French Community
Innovation Survey (CIS), conducted in 2006 for the period 2004–2006 (period t – 1) and in
2008 for the period 2006–2008 (period t). These surveys were provided by the French
Institute of Statistics (INSEE) and collected by the Industrial Studies and Statistics Office
(SESSI). The CIS follows a subject approach to innovation activities, with the firm as the
statistical unit (rather than an individual innovation). It combines census and stratified
sampling methods for each wave. In both waves, the stratum variables are activity and size,
and the data collection includes both innovators and non-innovators. The definitions of innovations (product, process, new to the market, new to the firm) also are homogeneous across both waves, as described in the Oslo Manual (OECD, 1997). Although information about environmental innovation is available only in CIS08, all other data appear in both waves. The final data set includes only firms that responded to both waves and excludes those that entered or exited during 2004–2008. The merged sample thus has the characteristics of a balanced panel, featuring 903 manufacturing firms with at least 250 employees (see Appendix A).

The sector composition and size distribution of the final sample did not vary substantially across periods. For the balanced data set of the CIS8, more than half of the sample (54%) consists of low or medium-low technology firms (according to the NACE\(^3\) classifications), operating in sectors such as plastics, metals, food, textiles, and wood. The remainder of the sample (46%) features high and medium-high technology firms, operating in industries such as electronics, instruments, and chemicals.

b. Dependent variables

We are interested in how cumulative openness, over time, affects product innovation with environmental effects and to what extent this impact differs depending on the nature of the product innovation (radical vs. incremental). To collect information related to product innovations that generate environmental benefits, we must identify firms that are product innovators and those that introduced new products with environmental effects.

Therefore, we turn to the CIS8 wave that contains information on EI. It identifies a firm as a product innovator if, in a given period of time, it introduced a new or significantly improved product, process, or organizational or marketing method. As we explain subsequently, we work only with the subsample of firms that introduced a product innovation during 2006–2008. Product innovators are defined as firms that introduced goods or services that were either new or significantly improved with respect to fundamental characteristics, technical specifications, incorporated software or other immaterial components, intended uses, or user friendliness. In this period, 42% of firms in France’s manufacturing industry were product innovators. With CIS8, we also can identify firms that introduced innovations with environmental effects. An environmental innovation is a new or significantly improved product (good or service), process, organizational method, or marketing method that creates environmental benefits compared with alternatives. Firms report whether they introduced different types of EI at the production or final use stage of their products. EI at the production stage included (1) reduced material use per unit of output; (2) reduced energy use per unit of output; (3) reduced CO2 footprint (total CO2 production) by the enterprise; (4) replaced materials with less polluting or hazardous substitutes; (5) reduced soil, water, noise, or air pollution; and (6) recycled waste, water, or materials. EI at the final use stage included: (7) reduced energy use; (8) reduced air, water, soil or noise pollution; and (9) improved recycling of product after use.

With this information, we reconstituted a subsample of firms that introduced product innovations and also reported an environmental impact in the production or final use stage.

With this definition, environmental innovation can be related to product innovation but also to

2 We used the common identification number, which is available in French CIS waves for researchers who have asked it to the French secrecy committee, in order to merge the two waves.

3 NACE is the statistical classification of economic activities in the European Community, used by all member states. We classified manufacturing industries according to their global technological intensity with NACE Revision 1.1 for the t – 1 period, whereas t was covered by NACE Revision 2, according to the Eurostat classification (http://epp.eurostat.ec.europa.eu/cache/ITY_SDDS/Annexes/hrst_st_esms_an9.pdf).
 organizational, process, or marketing innovations. Therefore, our estimation models include
dummy variables for organizational, process, and marketing innovations.

Finally, using the subsample of firms that had produced product innovations with
environmental effects, we capture the degree of novelty by identifying products or services
that are new to the market (proxy for radical innovation) and new to the firm (proxy for
incremental innovation). We build on previous literature (e.g., Bocquet et al., 2016; Duguet,
2006; Garcia and Calantone, 2002; Gilly et al., 2014) for these operationalizations of
incremental and radical innovations. For example, in Garcia and Calantone’s (2002)
classification, innovations are incremental when marked by slight improvements that use
existing technologies and target existing markets. Really new innovations result in either
market or technology discontinuities but not both, such as new technologies for existing
markets or existing technologies for new markets. Radical innovations imply discontinuities
in both the existing market and technology structures. Duguet (2006) uses similar
dichotomous variables to measure incremental and radical innovations, defining incremental
innovation as a significant improvement of an already existing product or launching a product
that is new for the firm but that is not new for the market or significant improvement of an
already existing process and radical innovation as launching a product that is new both for the
firm and for the market or/and implementation of a process breakthrough. Chang et al. (2014,
p. 241) also explain that they treat “radical and incremental innovation as two separate
constructs, so that correlations involving innovation as a continuum from more radical to
more incremental are not considered.”

In line with these studies, we test two dependent variables. The binary variable Radical EI
equals 1 if the product innovation with environmental benefits is new to the market, and 0
otherwise. The binary variable Incremental EI is equal to 1 if the product innovation with
environmental benefits is new to the firm, and 0 otherwise (see Appendixes A–C for the
variable definitions, descriptive statistics, and correlation matrix). With this approach, we
acknowledge that radical and incremental innovations are not exclusive. In our sample, more
than 75% of product innovations with environmental effects are radical, and 72% are
incremental. The sum of their shares accordingly is unlikely to equal 1; of the firms that
reported incremental EI, 65% also introduced radical EI, for example.

c. Independent variables

To assess how external knowledge search affects a firm’s capacity to introduce EI, we
introduce the temporal dimension of openness and test whether sporadic or persistent
openness (between t − 1 and t) influences EI during period t. To measure open search, we use
the data in both CIS6 and CIS8 related to our three different sources of external knowledge:
acquisition (external R&D and acquisition of technology), R&D cooperation, and sources of
information. External R&D is a binary variable that measures whether firms’ innovation
activities are performed by other firms or public or private research organizations and
purchased by the focal firm. Acquisition is another binary variable, referring to the acquisition
of advanced machinery, software, licensed patents, non-patent inventions, or know-how to
produce new or significantly improved products and processes. The R&D cooperation binary
variable measures whether firms cooperate with other firms or institutions to innovate. We
consider three external sources of information: market sourcing, or information from
suppliers, clients, competitors, consultants, commercial labs, private R&D institutes, and
other firms in the sector; institutional sourcing, including those from universities, other higher
education institutions, and government and public research institutes; and other sources,
which include the use of patents, databases, trade literature, or fairs. These variables equal 1 if
the source is crucial to the firm’s innovation activities and 0 otherwise. Respondents thus
answered the following question: “How important to your enterprise’s innovation activities were each of the following information sources?” Their choice options were “internal,” “market,” “institutional,” and “other” sources. The answers were ranked according to the degree of importance, from 0 (“not used”) to 3 (“very crucial”).

To address the temporal dimension of openness, we measure the use of six knowledge sources during the reference period for each wave, according to the relevant binary variables for persistent external R&D (t – 1, t), persistent acquisition, persistent R&D cooperation, persistent market sourcing, persistent institutional sourcing, and persistent other sourcing. Each variable equals 1 if the firm reports continuous engagement in that strategy during both t – 1 (2004–2006) and t (2006–2008), and 0 otherwise.

The continuous variable internal R&D intensity reflects a ratio between expenditures for internal R&D and the number of employees during 2006–2008. It offers a proxy for the firm’s absorptive capacity (Berchicci, 2013; Escribano et al., 2009).

We also added some control variables in our study. According to the Porter hypothesis, suitable regulation favors EI and may compensate for related costs by providing incentives for innovation, such as environmental taxes or certificates. A positive correlation arises between environmental regulation and EI (Horbach et al., 2013). Antonioli et al. (2013) find that polluting sector firms tend to innovate more environmentally than firms outside a polluting sector (Ford et al., 2014). For the current study, environmental regulation variables include existing regulations or taxes on pollution (existing regulations), as well as expected environmental financial regulations, environmental codes, and agreements for good practices within the sector (expected regulations). We also included the firm’s objectives for introducing EI: financial, such as benefiting from grants, subsidies, or other financial incentives (public funding); in response to legislation; for reduced labor costs (cost reduction); and due to control procedures for regularly identifying and reducing environmental impacts, such as environmental audits, environmental performance goals, or ISO 14001 certifications (control procedures). Moreover, there is a strong incentive for firms to engage in EI that are congruent with customer benefits (Kammerer, 2009). Kesidou and Demirel (2012) indicate that firms initiate EI to satisfy minimum customer and societal requirements. In line with eco-innovation literature, we also account for market-pull determinants by introducing market demand, equal to 1 if the firm introduced an EI in response to current and expected market demand from customers for environmental products or services, and 0 otherwise. Market geography accounts for market conditions, using a four-point Likert response scale (1 = local market, 2 = national, 3 = European, 4 = global market).

Finally, we add often-used control variables, which may influence the firm’s propensity to introduce EI. Belonging to group (which applied to 80% of the firms in our sample) is a binary variable, equal to 1 if the firm is part of a group. Firm size, measured as the natural logarithm of the number of employees, as in previous research (e.g., Cainelli et al., 2015; Cuevas-Rodríguez et al., 2014; Zhou and Li, 2012), should have a positive impact on EI, though proactive smaller firms may have profiles similar to large ones, considering that product EI can boost their competitive advantage (Klewitz and Hansen, 2014). Finally, to address the technological level of the industry, we introduce sector dummies that range from 1 to 4 to represent high-tech, medium–high-tech, medium–low-tech, and low-tech sectors, respectively.

5. Main results and discussion

We test the probability of being an environmental innovator in period t as a function of present and past open search. Because EI propensities are described by binary choice
equations (radical vs. incremental EI), we used a bivariate Probit model with two equations that included all explanatory variables. This approach enabled us to investigate correlations between EI categories that might be conditional on the set of explanatory variables.

4.1. Impact of sporadic vs. persistent openness

Table 1 presents the bivariate Probit estimation model for the impact of sporadic openness in t on the likelihood of EI in t. Table 2 shows the results of the estimation model in which we consider the persistent adoption of different search strategies across the lagged (t – 1) and current (t) periods.

INSERT TABLES 1 AND 2 ABOUT HERE

The results (Table 1) show that the acquisition of external knowledge or materials (Acquisition) has a significant, positive impact on incremental EI; there is no evidence for radical EI. **Institutional sources** appear relevant for radical EI, but we find no effect on incremental EI. In Table 2, we observe that continuous market information sourcing has a significant, positive impact on radical EI, in support of the hypothesis of a crucial role of market sourcing in the search for radical product EI. The probability of introducing a radical product innovation with environmental effects also increases with knowledge that a firm obtains through continuous exchanges with institutional actors. The parameter of persistent institutional sourcing is strongly significant and positive for radical EI. **Institutional sources** refer to information and knowledge stemming from public R&D establishments or universities, which often produce fundamental knowledge with a high degree of novelty. Firms that maintain persistent contacts with these institutional sources thus might enjoy important business opportunities for developing EI that are new to the market.

For incremental EI, the coefficients of persistent other knowledge sources are significant and positive. When implemented continuously in time (between t and t – 1), information stemming from conferences or professional associations appears to enhance firm capacities to introduce EI new to the firm or only imitate EI. This type of sourcing therefore serves as contact points, at which firms can find and keep in touch with potential alternatives in demand or market tendencies. Moreover, the results show that incremental EI is positively affected by persistent knowledge acquisition, whereas there is no such impact on radical EI.

Overall, our models provide some evidence which partially supports our Hypothesis 1, in that the more persistent the open knowledge search, the greater the firm’s EI, even though these results hold only for some type of EI and some types of openness. However, we cannot confirm Hypothesis 2, in which we predicted that openness would be more relevant for radical than for incremental EI. Persistent market sourcing and persistent institutional sourcing instead appear more likely to be associated with radical EI, whereas persistent other sourcing and persistent R&D acquisition seem to drive incremental EI. These results provide strong evidence that the different types of knowledge search that firms undertake are not homogeneous in terms of the EI they develop. Innovation with different degrees of novelty depends on different types of specific knowledge (Köhler et al., 2012).

To test Hypothesis 3, stipulating that the firm’s absorptive capacity positively moderates the impact of persistent knowledge search on the firm’s EI, we introduced interaction terms in

4 We also ran a model to test the impact of openness in t – 1. The lack of significant evidence suggests no effect of long-term open search strategies.

5 We also ran a model to test the impact of openness in t and t – 1 on the probability to introduce EI in t. We do not find any evidence of openness in t – 1.
the estimation models. The results for sporadic openness (Table 1) show that the coefficient of SoOther*R&D is significant and positive only for radical EI, whereas the coefficient of Other sources is not significant. Therefore, the type of sourcing is important for radical EI, but only if firms intensively invest in internal R&D. This result provides evidence of the crucial role of absorptive capacity in the relation between knowledge search and innovation.

The interaction of external R&D with internal R&D intensity exerts a significant positive effect only on incremental EI, after we account for the other explanatory and control variables. Turning now to the interaction terms between persistent openness and internal R&D intensity (Table 2), we observe that the coefficient of PerSoOther*R&D is significant and positive, confirming the moderating role of internal R&D intensity in the positive relationship between persistent sourcing from scientific conferences or professional associations and the probability to introduce radical EI. The coefficient of the interaction term of persistent external R&D with internal R&D intensity (PerExtR&D*R&D) is also significant and positive, providing strong support for the moderating role of absorptive capacity in the relationship between external R&D and radical EI. In other words, the continuous use of external R&D has beneficial impacts on radical product EI, but only for firms with absorptive capacity. The efficient exploitation of acquired technologies and knowledge demands complementary internal knowledge to lead to radical EI. These results suggest some complementarity between internal and external knowledge for radical EI, providing some evidence supporting partly Hypothesis 3 in the case of persistent openness.

When it comes to incremental EI, the interaction term PerExtR&D*R&D is also significant and positive, again indicating complementarity between internal R&D and external R&D for not only radical but also incremental EI. Furthermore, the interaction term PerSoInsti*R&D is significant and positive, so information and knowledge that a firm acquires from R&D institutes or universities enhances its capacity to introduce incremental EI, though only for firms that have invested enough in internal R&D. In other words, absorptive capacity is crucial in the relationship between institutional sourcing and incremental EI. Overall, these results provide some evidence supporting our Hypothesis 3.

4.2. Impact of variety of search strategies in t

To verify the robustness of our results, we ran further regressions with different specifications of our main explanatory variable, namely, search strategy variety in t and t – 1, instead of individual sources of external knowledge. We tested whether EI depends on the variety of open search strategies, assuming that a greater number of search strategies increases the impact of openness on EI performance (see Ghisetti et al., 2015). In addition, similar to Ghisetti et al. (2015) and Laursen and Salter (2006), for the breadth of information sources, we constructed two measures of variety, for t and t – 1 (i.e., information sources, R&D cooperation, and acquisition). The two measures are count variables, from 0 to indicate the use of no search strategy to 6 if all search strategies were implemented.

The results for the relationship between openness diversity in t and the likelihood of EI in t appear in Table 3. External search variety has a significant impact on radical EI_P and EI_U. However, the parameter for Squared Variety is positive and significant for radical EI, indicating increasing returns on openness when firms use too many search strategies. Although an openness strategy that combines various sources and the acquisition of external knowledge has not been shown to be associated with the probability of EI, broadening the search beyond a certain level is beneficial to EI. This result might reflect the cumulative process of knowledge building, in that diverse pieces of knowledge are fundamental to the development of radical EI. This result differs from previous findings of a curvilinear
relationship between the variety of search strategies and the likelihood of being a technological innovator (Katila and Ahuja, 2002; Laursen and Salter, 2006) or environmental innovator (Ghisetti et al., 2015).

Table 4 contains the estimation results related to the temporal variety of search strategies in period $t - 1$, $\textit{Variety}(t - 1)$. All else being equal, this variable is not significant for any category of EI. This result confirms the findings for the individual search strategies and suggests no evidence of a long-term impact of search strategy investments on a firm’s EI.

6. Conclusion

This article analyzes the relevance of openness for radical/incremental technological innovation with environmental effects. Recent empirical studies investigate the impact of external knowledge search strategies on EI (Ghisetti et al., 2015), considering different indicators of openness and ignoring the intertemporal dimension in this relation. The current study offers two new insights. First, we develop a more global approach to openness, by arguing that access to external knowledge might occur through knowledge sourcing but also with other strategies, such as R&D acquisition and cooperation. Second, we test an underlying hypothesis, namely, that a long-term process enables firms to consolidate their knowledge base, such that persistent open search strategies enhance EI. Furthermore, we estimate bivariate Probit models and undertake additional sensitivity and robustness checks, using data from two waves of the French CIS.

With these insights and approaches, our study makes three main theoretical contributions to literature on EI. First, it provides novel results related to the temporal dimension in literature on open innovation. The temporal dimension of openness matters. Persistent open search efforts are associated with a firm’s propensity to introduce EI more than a sporadic openness strategy is. In particular, some openness practices are likely to propel the introduction of EI only if they are implemented continuously in time. Thus, persistent market-driven sourcing, stemming from competitors, suppliers, or consultants, is related more to the firm’s capacity to introduce radical EI than are sporadic market-driven forms. In the same vein, persistent search from other sources (e.g., conferences, professional associations) seem more efficient in terms of generating incremental EI than sporadic search. To the best of our knowledge, our study thus is the first to capture the substantial time lag usually associated with returns on investment of long-maturity openness strategies and their impact on EI, which need to be tracked with longitudinal data.

Second, we provide evidence of the heterogeneous impacts of different types of knowledge search on different types of EI (radical vs. incremental), thus extending Ghisetti et al.’s (2015) results. From a research perspective, openness encompasses diverse practices undertaken by firms in different, specific contexts. We consider not only external information sources in the form of knowledge search strategies (Ghisetti et al., 2014; Köhler et al., 2012; Laursen & Salter, 2006) but also other openness practices, such as external R&D, R&D cooperation, and external knowledge acquisition. In so doing, we provide a broader perspective on the nature of search for external knowledge and its impact on the firm’s capacity to introduce EI. As Köhler et al. (2012) argue, there is a pertinent issue of selectivity in firms’ knowledge search. Within this study, we find heterogeneous impacts of several openness strategies on EI. Market sourcing drives radical product EI, whether firms have intensively invested on internal R&D or not. Even without investing in internal R&D, firms that search for knowledge from customers, suppliers, competitors, consultants, laboratories, or private R&D institutes are more prone to develop radical product EI. This finding supports theories that suggest that
radical EI entails substantial uncertainty and novelty, which may require manufacturers to
interact with external partners to ensure the recyclability of their products, guarantee the
supply of inputs with eco-friendly features, or keep up to date on the latest scientific
developments that might benefit their EI. Moreover, the cumulative use of information from
universities or R&D institutions is more likely to be associated with radical product EI; the
probability of incremental EI is affected more by the cumulative use of information sources
from professional associations, exhibitions, and external knowledge or material acquisition.

Third, EI often are more complex than traditional technological innovations, so internal
R&D intensity appears particularly relevant for helping firms increase the intelligibility of the
external knowledge they gather and transforming it into new, clean products. To track this
role, we introduced internal R&D intensity, with several notable results. For example, the
persistent adoption of an external R&D strategy is associated with a heightened probability of
introducing EI during the current period. The strategic choice to use external R&D
continuously also turns out to have positive effects on both radical and incremental EI when
manufacturers have undertaken internal R&D. This finding highlights a positive moderating
role of internal R&D intensity in the relationship between this search strategy and EI. We also
observe that internal R&D intensity does not moderate the link between market sourcing and
EI. That is, complementarity between internal and external resources seemingly depends on
the innovation context.

From a management perspective, this study contributes to a better understanding of the
role of various open search strategies for EI and their use over time. It provides useful insights
for managers who are responsible for developing these innovations. Considering the
importance of firms for macroeconomic sustainable development, our research represents a
step toward greater comprehension of how to use open innovation, by focusing on the
external search strategies that firms should implement to develop ecologically and
environmentally friendly innovations. From a public policy perspective, at least two important
implications for policy makers can be derived. First, the cumulativeness of knowledge search
matters. Persistent search over time is more likely to expand firms’ introductions of clean
products. To encourage firms to develop clean products, environmental policy therefore
should account for temporal aspects of the openness returns of environmental innovation.
However, high costs due to the continual implementation of openness strategies might impede
firms’ incentives to continue in this direction. Thus, government policies should encourage
network or cluster development, as well as propose technology or knowledge transfer
structures that create stable exchange platforms among different economic authors over time.
Second, a firm’s internal competencies are crucial for its performance, but the leveraging role
of internal R&D intensity is contingent on the firm’s specific characteristics and the type of
EI (new to the market vs. new to the firm). Thus, though subsidies and financial incentives for
clean innovation already exist, the efficiency of such policies might be improved by
accounting for this contingency.

In terms of limitations, our variables are all linked to the CIS; it would be interesting to
study the effect of persistent open search on persistent EI, which was not possible with our
data, because the French CIS included EI only in one wave (2006–2008). Furthermore, as
indicated in the methodological section, some bias may arise linked because the CIS data do
not allow to provide “pure” groups of the different types of innovators. Another limitation
also marks the CIS data. If companies introduce several innovations during a three-year
period, the CIS data cannot specify what fraction of these innovations are environmentally
friendly. With the available data, we could not disentangle situations in which various types
of innovation take place in the same reference period or obtain “pure groups” of innovators to
differentiate clearly between radical and incremental innovations on one hand, or
environmental and non-environmental innovations on the other hand. These aspects and
limitations of Community Innovation Surveys have already been mentioned by several authors who have dealt with the methodological aspects of such data (Crépon et al., 1998; Mohnen and Röller, 2005). An interesting research perspective would be to apply a cluster analysis or principal component analysis for both technological and environmental innovation (radical vs. incremental) in order to investigate the links and determinants. Moreover, prior literature has not provided a clear understanding of how open innovation approaches might work differently for EI with different motives (compliance vs. voluntary). Another relatively underdeveloped but interesting research topic pertains to the role of different governance modes for openness approaches, in relation to a firm’s EI performance. Finally, analyzing complementarities among various sources of information or innovation types might reveal which combinations of external search strategies best enhance firms’ pursuit of innovations that can reduce environmental harms.

References

Corradini, M., Costantini, V., Mancinelli, S., Mazzanti, M. 2014. Unveiling the dynamic relation between R&D and emission abatement: national and sectoral innovation perspectives from the EU. Ecol. Econ. 102(C), 48–59.

Horbach, J., Oltra, V., Belin, J. 2013. Determinants and specificities of eco-innovations compared to other innovations—an econometric analysis for the French and German industry based on the community innovation survey. Ind. & Innov. 20(6), 523-543.

Appendix A. Descriptive statistics (period t: 2006–2008)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std.</th>
<th>Dev.</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radical EI</td>
<td>903</td>
<td>.75</td>
<td>.43</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Incremental EI</td>
<td>903</td>
<td>.72</td>
<td>.42</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Market sources</td>
<td>903</td>
<td>.72</td>
<td>.28</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Institutional sources</td>
<td>903</td>
<td>.32</td>
<td>.46</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Other sources</td>
<td>903</td>
<td>.62</td>
<td>.48</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>R&D cooperation</td>
<td>903</td>
<td>.62</td>
<td>.48</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>External R&D</td>
<td>903</td>
<td>.50</td>
<td>.48</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Acquisition</td>
<td>903</td>
<td>.40</td>
<td>.49</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Persistent market sourcing</td>
<td>903</td>
<td>.75</td>
<td>.43</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Persistent institutional sourcing</td>
<td>903</td>
<td>.20</td>
<td>.39</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Persistent other sourcing</td>
<td>903</td>
<td>.41</td>
<td>.49</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Persistent R&D cooperation</td>
<td>903</td>
<td>.44</td>
<td>.49</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Persistent external R&D</td>
<td>903</td>
<td>.35</td>
<td>.48</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Persistent acquisition</td>
<td>903</td>
<td>.31</td>
<td>.46</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Variety</td>
<td>903</td>
<td>3.29</td>
<td>1.25</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Internal R&D intensity</td>
<td>903</td>
<td>7.60</td>
<td>26.80</td>
<td>0</td>
<td>638.78</td>
</tr>
<tr>
<td>Cost reduction</td>
<td>903</td>
<td>0.56</td>
<td>0.49</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Existing regulations</td>
<td>903</td>
<td>0.60</td>
<td>0.47</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Expected regulations</td>
<td>903</td>
<td>0.44</td>
<td>0.49</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Environmental codes</td>
<td>903</td>
<td>0.42</td>
<td>0.45</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Control procedures</td>
<td>903</td>
<td>0.74</td>
<td>0.43</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Public funding</td>
<td>903</td>
<td>0.16</td>
<td>0.37</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Market demand</td>
<td>903</td>
<td>0.41</td>
<td>0.40</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Size</td>
<td>903</td>
<td>5.60</td>
<td>1.25</td>
<td>5.49</td>
<td>9.58</td>
</tr>
<tr>
<td>Belonging to group</td>
<td>903</td>
<td>.79</td>
<td>.40</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Market geography</td>
<td>903</td>
<td>3.68</td>
<td>.67</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Sector dummies</td>
<td>903</td>
<td>.30</td>
<td>.45</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
Appendix B. Variable definitions

<table>
<thead>
<tr>
<th>Variables</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radical EI</td>
<td>Equal to 1 if the firm has introduced a new or significantly improved product or services with environmental benefits which are new to the market; 0 otherwise</td>
</tr>
<tr>
<td>Incremental EI</td>
<td>Equal to 1 if the firm has introduced a new or significantly improved product or services with environmental benefits which are new to the firm; 0 otherwise</td>
</tr>
<tr>
<td>Variety</td>
<td>Number of open search strategies: 6 if all strategies were adopted (acquisition, external R&D, R&D cooperation, market sourcing, institutional sourcing, other sourcing), 0 if none</td>
</tr>
<tr>
<td>Acquisition</td>
<td>Equal to 1 if the firm has acquired advanced machinery, equipment, computer hardware or software to produce new or significantly improved products and processes, 0 otherwise</td>
</tr>
<tr>
<td>External R&D</td>
<td>Equal to 1 if the firm’s R&D activities are performed by other firms or public or private research organizations and then purchased by the firm, 0 otherwise</td>
</tr>
<tr>
<td>R&D Cooperation</td>
<td>Equal to 1 if the firm undertakes R&D cooperation for innovation activities with other firms or institutions during 2006–2008, 0 otherwise</td>
</tr>
<tr>
<td>Market sources</td>
<td>Equal to 1 if competitors, suppliers, customers, consultants, and private R&D institutes as sources of information are “crucial” for the firm’s innovation process, 0 otherwise</td>
</tr>
<tr>
<td>Institutional sources</td>
<td>Equal to 1 if universities, other higher education institutions, government, or public research institutes as sources of information are “crucial” for the firm’s innovation process, 0 otherwise</td>
</tr>
<tr>
<td>Other sources</td>
<td>Equal to 1 if conferences, scientific journals, professional associations, or technical standards as sources of information are “crucial” for the firm’s innovation process, 0 otherwise</td>
</tr>
<tr>
<td>Persistent market sourcing</td>
<td>Equal to 1 if the firm has reported continuous market sourcing during t–1 and t, 0 otherwise</td>
</tr>
<tr>
<td>Persistent institutional sourcing</td>
<td>Equal to 1 if the firm has reported continuous institutional sourcing during t–1 and t, 0 otherwise</td>
</tr>
<tr>
<td>Persistent other sourcing</td>
<td>Equal to 1 if the firm has reported continuous other sourcing during t–1 and t, 0 otherwise</td>
</tr>
<tr>
<td>Persistent cooperation</td>
<td>Equal to 1 if the firm has reported continuous R&D cooperation during t–1 and t, 0 otherwise</td>
</tr>
<tr>
<td>Persistent external R&D</td>
<td>Equal to 1 if the firm has reported continuous external R&D during t–1 and t, 0 otherwise</td>
</tr>
<tr>
<td>Persistent acquisition</td>
<td>Equal to 1 if the firm has reported continuous acquisition during t–1 and t, 0 otherwise</td>
</tr>
<tr>
<td>Internal R&D intensity</td>
<td>Ratio of internal R&D expenditures on the number of employees during 2006-2008</td>
</tr>
<tr>
<td>Cost reduction</td>
<td>Equal to 1 if the firm has introduced an environmental innovation to reduce labor costs, 0 otherwise</td>
</tr>
<tr>
<td>Existing regulations</td>
<td>Equal to 1 if the firm has introduced an environmental innovation in response to existing environmental regulations or taxes on pollution, 0 otherwise</td>
</tr>
<tr>
<td>Expected regulations</td>
<td>Equal to 1 if the firm has introduced an environmental innovation in response to environmental regulations or taxes that the firm expects to be introduced in the future, 0 otherwise</td>
</tr>
<tr>
<td>Environmental codes</td>
<td>Equal to 1 if the firm has introduced an environmental innovation in response to voluntary codes or agreements for environmental good practices within the sector, 0 otherwise</td>
</tr>
<tr>
<td>Control procedures</td>
<td>Equal to 1 if the firm has procedures in place to regularly identify and reduce the environmental impacts, such as environmental audits, environmental performance goals, or ISO 14001 certification, 0 otherwise</td>
</tr>
<tr>
<td>Public funding</td>
<td>Equal to 1 if the firm has introduced an environmental innovation in response to the availability of government grants, subsidies, or other financial incentives, 0 otherwise</td>
</tr>
<tr>
<td>Market demand</td>
<td>Equal to 1 if the firm has introduced an environmental innovation in response to current and expected market demand from customers for environmental innovations, 0 otherwise</td>
</tr>
<tr>
<td>Market geography</td>
<td>Four-point Likert response scale: 1 = local, 2 = national, 3 = European, and 4 = global</td>
</tr>
<tr>
<td>Belonging to group</td>
<td>Equal to 1 if part of a group; 0 otherwise</td>
</tr>
<tr>
<td>Size</td>
<td>Logarithm of the number of employees</td>
</tr>
<tr>
<td>Sector dummies</td>
<td>High-tech manufacturing, Medium high-tech manufacturing, Medium low-tech manufacturing, Low-tech manufacturing (reference)</td>
</tr>
</tbody>
</table>
Appendix C. Correlation matrix

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Radical EI (1)</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Incremental EI (2)</td>
<td>0.34***</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Market sources (3)</td>
<td>0.06***</td>
<td>0.08**</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Institutional sources (4)</td>
<td>0.15</td>
<td>0.02**</td>
<td>0.05</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Other sources (5)</td>
<td>0.05**</td>
<td>0.12</td>
<td>0.27*</td>
<td>0.29</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>R&D cooperation (6)</td>
<td>0.07***</td>
<td>0.07**</td>
<td>0.12</td>
<td>0.25</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>External R&D (7)</td>
<td>0.09**</td>
<td>0.07***</td>
<td>0.13*</td>
<td>0.23**</td>
<td>0.07*</td>
<td>0.31**</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Acquisition (8)</td>
<td>0.01</td>
<td>0.13**</td>
<td>0.05***</td>
<td>0.05</td>
<td>0.06</td>
<td>0.12*</td>
<td>0.18**</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Persistent market sourcing (9)</td>
<td>0.16**</td>
<td>0.04*</td>
<td>0.56**</td>
<td>0.18</td>
<td>0.17**</td>
<td>0.19**</td>
<td>0.19***</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistent institutional sourcing (10)</td>
<td>0.12***</td>
<td>0.00</td>
<td>0.04*</td>
<td>0.72</td>
<td>0.17*</td>
<td>0.21</td>
<td>0.24**</td>
<td>0.03***</td>
<td>0.15*</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistent other sourcing (11)</td>
<td>0.05**</td>
<td>0.08**</td>
<td>0.14*</td>
<td>0.27***</td>
<td>0.65</td>
<td>0.18</td>
<td>0.16**</td>
<td>0.08</td>
<td>0.32*</td>
<td>0.25</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistent cooperation (12)</td>
<td>0.08</td>
<td>0.07***</td>
<td>0.12**</td>
<td>0.30</td>
<td>0.16</td>
<td>0.68*</td>
<td>0.28</td>
<td>0.04*</td>
<td>0.31***</td>
<td>0.36</td>
<td>0.28</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistent external R&D (13)</td>
<td>0.11***</td>
<td>0.05*</td>
<td>0.11*</td>
<td>0.28*</td>
<td>0.10*</td>
<td>0.26*</td>
<td>0.77</td>
<td>0.17**</td>
<td>0.27</td>
<td>0.37</td>
<td>0.24**</td>
<td>0.37***</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistent acquisition (14)</td>
<td>0.05*</td>
<td>0.08***</td>
<td>0.06*</td>
<td>0.13</td>
<td>0.10**</td>
<td>0.18**</td>
<td>0.23***</td>
<td>0.82**</td>
<td>0.26</td>
<td>0.04***</td>
<td>0.10*</td>
<td>0.18*</td>
<td>0.29**</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal R&D intensity (15)</td>
<td>0.02***</td>
<td>-0.02</td>
<td>0.00</td>
<td>0.08**</td>
<td>-0.02</td>
<td>0.00</td>
<td>0.05**</td>
<td>0.05**</td>
<td>0.08**</td>
<td>0.06***</td>
<td>0.08</td>
<td>0.07*</td>
<td>0.07</td>
<td>0.09</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process innovation (16)</td>
<td>0.04***</td>
<td>0.09***</td>
<td>0.07*</td>
<td>0.09</td>
<td>0.10*</td>
<td>0.22*</td>
<td>0.08</td>
<td>0.27***</td>
<td>0.07*</td>
<td>0.08**</td>
<td>0.12</td>
<td>0.15</td>
<td>0.14**</td>
<td>0.05</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organizational innovation (17)</td>
<td>0.05***</td>
<td>0.11*</td>
<td>0.06***</td>
<td>0.14</td>
<td>0.08**</td>
<td>0.23*</td>
<td>0.12*</td>
<td>0.14</td>
<td>0.08**</td>
<td>0.17**</td>
<td>0.03**</td>
<td>0.14**</td>
<td>0.10*</td>
<td>0.19*</td>
<td>0.04*</td>
<td>0.28***</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Marketing innovation (18)</td>
<td>0.09***</td>
<td>0.05*</td>
<td>0.08***</td>
<td>0.08</td>
<td>0.09</td>
<td>0.12**</td>
<td>0.07</td>
<td>0.02***</td>
<td>0.02</td>
<td>0.03***</td>
<td>0.07**</td>
<td>0.12**</td>
<td>0.07</td>
<td>0.06</td>
<td>0.07</td>
<td>0.11</td>
<td>0.27***</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Notes: ***p < 0.01, **p < 0.05, *p < 0.1.
<table>
<thead>
<tr>
<th></th>
<th>Environmental innovation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Radical</td>
<td>Incremental</td>
</tr>
<tr>
<td>Openness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market sources (t)</td>
<td>0.250</td>
<td>0.214</td>
</tr>
<tr>
<td>(0.207)</td>
<td>(0.401)</td>
<td></td>
</tr>
<tr>
<td>Institutional sources (t)</td>
<td>0.102***</td>
<td>0.370</td>
</tr>
<tr>
<td>(0.232)</td>
<td>(0.254)</td>
<td></td>
</tr>
<tr>
<td>Other sources (t)</td>
<td>0.025</td>
<td>0.738</td>
</tr>
<tr>
<td>(0.411)</td>
<td>(0.528)</td>
<td></td>
</tr>
<tr>
<td>R&D cooperation (t)</td>
<td>0.835</td>
<td>0.624</td>
</tr>
<tr>
<td>(0.432)</td>
<td>(0.385)</td>
<td></td>
</tr>
<tr>
<td>External R&D (t)</td>
<td>0.254</td>
<td>-0.105</td>
</tr>
<tr>
<td>(0.432)</td>
<td>(0.465)</td>
<td></td>
</tr>
<tr>
<td>Acquisition (t)</td>
<td>0.452</td>
<td>0.204***</td>
</tr>
<tr>
<td>(0.521)</td>
<td>(0.368)</td>
<td></td>
</tr>
<tr>
<td>Moderating role of internal R&D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SoMarket*R&D (t)</td>
<td>0.132</td>
<td>-0.025</td>
</tr>
<tr>
<td>(0.442)</td>
<td>(0.014)</td>
<td></td>
</tr>
<tr>
<td>Soinst*R&D (t)</td>
<td>0.085</td>
<td>-0.258</td>
</tr>
<tr>
<td>(0.532)</td>
<td>(0.439)</td>
<td></td>
</tr>
<tr>
<td>SoOther*R&D (t)</td>
<td>0.642**</td>
<td>-0.724</td>
</tr>
<tr>
<td>(0.552)</td>
<td>(0.536)</td>
<td></td>
</tr>
<tr>
<td>Cooperation*R&D (t)</td>
<td>-0.565</td>
<td>-0.648</td>
</tr>
<tr>
<td>(0.432)</td>
<td>(0.429)</td>
<td></td>
</tr>
<tr>
<td>ExtR&D*R&D (t)</td>
<td>-0.148</td>
<td>0.931**</td>
</tr>
<tr>
<td>(0.452)</td>
<td>(0.464)</td>
<td></td>
</tr>
<tr>
<td>Acquisition*R&D (t)</td>
<td>-0.330</td>
<td>-0.175</td>
</tr>
<tr>
<td>(0.324)</td>
<td>(0.396)</td>
<td></td>
</tr>
<tr>
<td>Other explanatory variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal R&D intensity (t)</td>
<td>1.141***</td>
<td>1.680*</td>
</tr>
<tr>
<td>(0.232)</td>
<td>(0.252)</td>
<td></td>
</tr>
<tr>
<td>Internal sources</td>
<td>-0.002</td>
<td>0.145</td>
</tr>
<tr>
<td>(0.021)</td>
<td>(0.174)</td>
<td></td>
</tr>
<tr>
<td>Process innovation</td>
<td>0.141</td>
<td>0.060</td>
</tr>
<tr>
<td>(0.004)</td>
<td>(0.136)</td>
<td></td>
</tr>
<tr>
<td>Organizational innovation</td>
<td>-0.097</td>
<td>0.215**</td>
</tr>
<tr>
<td>(0.121)</td>
<td>(0.119)</td>
<td></td>
</tr>
<tr>
<td>Marketing innovation</td>
<td>0.197**</td>
<td>0.020</td>
</tr>
<tr>
<td>(0.110)</td>
<td>(0.107)</td>
<td></td>
</tr>
<tr>
<td>Existing regulations (t)</td>
<td>0.521***</td>
<td>1.224***</td>
</tr>
<tr>
<td>(0.252)</td>
<td>(0.265)</td>
<td></td>
</tr>
<tr>
<td>Expected regulations (t)</td>
<td>0.210</td>
<td>0.124</td>
</tr>
<tr>
<td>(0.280)</td>
<td>(0.212)</td>
<td></td>
</tr>
<tr>
<td>Market demand (t)</td>
<td>0.352**</td>
<td>0.021</td>
</tr>
<tr>
<td>(0.211)</td>
<td>(0.225)</td>
<td></td>
</tr>
<tr>
<td>Environmental codes (t)</td>
<td>0.509***</td>
<td>0.874***</td>
</tr>
<tr>
<td>(0.221)</td>
<td>(0.224)</td>
<td></td>
</tr>
<tr>
<td>Control procedures (t)</td>
<td>0.621***</td>
<td>0.445***</td>
</tr>
<tr>
<td>(0.185)</td>
<td>(0.210)</td>
<td></td>
</tr>
<tr>
<td>Cost reduction (t)</td>
<td>0.565***</td>
<td>0.521***</td>
</tr>
<tr>
<td>(0.101)</td>
<td>(0.320)</td>
<td></td>
</tr>
<tr>
<td>Public funding (t)</td>
<td>0.540*</td>
<td>0.102*</td>
</tr>
<tr>
<td>(0.585)</td>
<td>(0.421)</td>
<td></td>
</tr>
<tr>
<td>Firm size</td>
<td>0.152</td>
<td>0.652</td>
</tr>
<tr>
<td>(0.174)</td>
<td>(0.012)</td>
<td></td>
</tr>
<tr>
<td>Belonging to group</td>
<td>-0.166</td>
<td>-0.321</td>
</tr>
<tr>
<td>(0.151)</td>
<td>(0.145)</td>
<td></td>
</tr>
<tr>
<td>Market geography</td>
<td>-0.085</td>
<td>0.152</td>
</tr>
<tr>
<td>(0.041)</td>
<td>(0.085)</td>
<td></td>
</tr>
<tr>
<td>Sector dummies</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Constant</td>
<td>1.081***</td>
<td>1.158***</td>
</tr>
<tr>
<td>(0.651)</td>
<td>(0.542)</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Robust standard errors are in parentheses. *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$.

Observations: 903
Log Likelihood: -741.00
p-Value: 0.00
Rho: 0.792 (0.452)
Wald χ^2: 128.45
Table 2: Bivariate Probit estimation results for persistent openness

<table>
<thead>
<tr>
<th>Openness</th>
<th>Environmental innovation</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Radical</td>
<td>Incremental</td>
<td></td>
</tr>
<tr>
<td>Persistent market sourcing</td>
<td>0.521**</td>
<td>-0.528</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.452)</td>
<td>(0.352)</td>
<td></td>
</tr>
<tr>
<td>Persistent institutional sourcing</td>
<td>0.325***</td>
<td>-0.210</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.152)</td>
<td>(0.102)</td>
<td></td>
</tr>
<tr>
<td>Persistent other sourcing</td>
<td>0.215</td>
<td>0.320***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.524)</td>
<td></td>
</tr>
<tr>
<td>Persistent cooperation</td>
<td>-1.212</td>
<td>0.042</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.521)</td>
<td>(0.295)</td>
<td></td>
</tr>
<tr>
<td>Persistent external R&D</td>
<td>-0.152</td>
<td>-0.591</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.520)</td>
<td>(0.542)</td>
<td></td>
</tr>
<tr>
<td>Persistent acquisition</td>
<td>0.101</td>
<td>0.391***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.201)</td>
<td>(0.210)</td>
<td></td>
</tr>
</tbody>
</table>

Moderating role of internal R&D

PerSoMarket*R&D	0.563	0.483		
	(0.521)	(0.421)		
PerSolInsti*R&D	0.452	0.221***		
	(0.54)	(0.323)		
PerSoOther*R&D	0.754**	-0.554		
	(0.0125)	(0.542)		
PerCooperation*R&D	0.325	0.652		
	(0.665)	(0.210)		
PerExtR&D*R&D	0.324*	0.052*		
	(0.625)	(0.241)		
PerAcquisition*R&D	0.210	0.010		
	(0.352)	(0.421)		

Other explanatory variables

Observations	903	YES		
Log Likelihood	-725.00			
p-Value	0.00			
Rho	0.784 (0.501)			
Wald χ²	122.65			

Notes: Robust standard errors are in parentheses. *** p < 0.01. ** p < 0.05. * p < 0.1.

Table 3: Bivariate Probit estimation results for openness variety (t)

<table>
<thead>
<tr>
<th>Openness</th>
<th>Environmental innovation</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Radical</td>
<td>Incremental</td>
<td></td>
</tr>
<tr>
<td>Search strategies variety (t)</td>
<td>-0.401</td>
<td>0.095</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.214)</td>
<td>(0.257)</td>
<td></td>
</tr>
<tr>
<td>Squared variety (t)</td>
<td>0.142**</td>
<td>-0.051</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.102)</td>
<td>(0.021)</td>
<td></td>
</tr>
</tbody>
</table>

Moderating role of internal sourcing

| Variety*R&D (t) | -0.045 | 0.120 | | |
| | (0.142) | (0.143) | | |

Other explanatory variables

| Observations | 903 | YES | | |

Notes: Robust standard errors are in parentheses. *** p < 0.01. ** p < 0.05. * p < 0.1.
Table 4: Bivariate Probit estimation results for openness variety (t – 1)

<table>
<thead>
<tr>
<th></th>
<th>Environmental innovation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Radical</td>
</tr>
<tr>
<td>Openness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variety (t – 1)</td>
<td>0.131</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.342)</td>
</tr>
<tr>
<td>Squared variety (t – 1)</td>
<td>0.052</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.028)</td>
</tr>
<tr>
<td>Moderating role of absorptive capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variety*R&D (t – 1)</td>
<td>0.010</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.041)</td>
</tr>
<tr>
<td>Other explanatory variables</td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>Observations</td>
<td>903</td>
<td>903</td>
</tr>
</tbody>
</table>

Notes: Robust standard errors are in parentheses. *** p < 0.01. ** p < 0.05. * p < 0.1.